Cell-autonomous involvement of Mab21l1 is essential for lens placode development.

نویسندگان

  • Ryuichi Yamada
  • Yoko Mizutani-Koseki
  • Takanori Hasegawa
  • Noriko Osumi
  • Haruhiko Koseki
  • Naoki Takahashi
چکیده

The mab-21 gene was first identified because of its requirement for ray identity specification in Caenorhabditis elegans. It is now known to constitute a family of genes that are highly conserved from vertebrates to invertebrates, and two homologs, Mab21l1 and Mab21l2, have been identified in many species. We describe the generation of Mab21l1-deficient mice with defects in eye and preputial gland formation. The mutant mouse eye has a rudimentary lens resulting from insufficient invagination of the lens placode caused by deficient proliferation. Chimera analyses suggest that the lens placode is affected in a cell-autonomous manner, although Mab21l1 is expressed in both the lens placode and the optic vesicle. The defects in lens placode development correlate with delayed and insufficient expression of Foxe3, which is also required for lens development, while Maf, Sox2, Six3 and PAX6 levels are not significantly affected. Significant reduction of Mab21l1 expression in the optic vesicle and overlying surface ectoderm in Sey homozygotes indicates that Mab21l1 expression in the developing eye is dependent upon the functions of Pax6 gene products. We conclude that Mab21l1 expression dependent on PAX6 is essential for lens placode growth and for formation of the lens vesicle; lack of Mab21l1 expression causes reduced expression of Foxe3 in a cell-autonomous manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye.

The Pax6 transcription factor plays a key role in ocular development of vertebrates and invertebrates. Homozygosity of the Pax6 null mutation in human and mice results in arrest of optic vesicle development and failure to initiate lens formation. This phenotype obscures the understanding of autonomous function of Pax6 in these tissue components and during later developmental stages. We employed...

متن کامل

Specification of functional cranial placode derivatives from human pluripotent stem cells.

Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a c...

متن کامل

Prox1 is differentially localized during lens development

Prox1, the vertebrate cognate of Drosophila Prospero, is a homeodomain protein essential for the development of the lens, liver and lymphatic system. While it is well established that the subcellular distribution of Prospero changes during development, this had not been demonstrated for Prox1. Here, high-resolution confocal microscopy demonstrated that Prox1 protein is predominately cytoplasmic...

متن کامل

Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye.

Chimaeric mice were made by aggregating Pax6(-/-) and wild-type mouse embryos, in order to study the interaction between the optic vesicle and the prospective lens epithelium during early stages of eye development. Histological analysis of the distribution of homozygous mutant cells in the chimaeras showed that the cell-autonomous removal of Pax6(-/-) cells from the lens, shown previously at E1...

متن کامل

BMP - a key signaling molecule in specification and morphogenesis of sensory structures

Cranial placodes are transient thickenings of the vertebrate embryonic head ectoderm that will give rise to sensory (olfactory, lens, and otic) and non-sensory (hypophyseal) components of the peripheral nervous system (PNS). In most vertebrate embryos, these four sensory placodes undergo invagination. Epithelial invagination is a morphological process in which flat cell sheets transform into th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 9  شماره 

صفحات  -

تاریخ انتشار 2003